Strong convergence of modified Ishikawa iterations for nonlinear mappings

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong convergence of modified Ishikawa iterations for nonlinear mappings

In this paper, we prove a strong convergence theorem of modified Ishikawa iterations for relatively asymptotically nonexpansive mappings in Banach space. Our results extend and improve the recent results by Nakajo, Takahashi, Kim, Xu, Mat-sushita and some others.

متن کامل

Strong Convergence Theorems of Modified Ishikawa Iterations for Countable Hemi-Relatively Nonexpansive Mappings in a Banach Space

1 Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand 2 Centre of Excellence in Mathematics, CHE, Si Ayuthaya Road, Bangkok 10400, Thailand 3 Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), Bangmod, Bangkok 10140, Thailand 4 Department of Mathematics and Statistics, Faculty of Science and Agricu...

متن کامل

Strong Convergence of the Iterations of Quasi $phi$-nonexpansive Mappings and its Applications in Banach Spaces

In this paper, we study the iterations of quasi $phi$-nonexpansive mappings and its applications in Banach spaces. At the first, we prove strong convergence of the sequence generated by the hybrid proximal point method to a common fixed point of a family of quasi $phi$-nonexpansive mappings.  Then, we give  applications of our main results in equilibrium problems.

متن کامل

Strong convergence of modified Noor iterations

A point x ∈ C is a fixed point of T provided Tx = x. Denote by F(T) the set of fixed points of T ; that is, F(T)= {x ∈ C : Tx = x}. It is assumed throughout the paper that T is a nonexpansive mapping such that F(T) =∅. One classical way to study nonexpansive mappings is to use contractions to approximate a nonexpansive mapping [1, 9]. More precisely, take t ∈ (0,1) and define a contraction Tt :...

متن کامل

Strong convergence of approximated iterations for asymptotically pseudocontractive mappings

The asymptotically nonexpansive mappings have been introduced by Goebel and Kirk in 1972. Since then, a large number of authors have studied the weak and strong convergence problems of the iterative algorithms for such a class of mappings. It is well known that the asymptotically nonexpansive mappings is a proper subclass of the class of asymptotically pseudocontractive mappings. In the present...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings Mathematical Sciences

سال: 2007

ISSN: 0253-4142,0973-7685

DOI: 10.1007/s12044-007-0008-y